Efficient Discovery of Variable-length Time Series Motifs with Large Length Range in Million Scale Time Series
نویسندگان
چکیده
Detecting repeated variable-length patterns, also called variable-length motifs, has received a great amount of attention in recent years. Current state-of-the-art algorithm utilizes fixed-length motif discovery algorithm as a subroutine to enumerate variable-length motifs. As a result, it may take hours or days to execute when enumeration range is large. In this work, we introduce an approximate algorithm called HierarchIcal based Motif Enumeration (HIME) to detect variable-length motifs with a large enumeration range in million-scale time series. We show in the experiments that the scalability of the proposed algorithm is significantly better than that of the state-of-theart algorithm. Moreover, the motif length range detected by HIME is considerably larger than previous sequence-matching based approximate variable-length motif discovery approach. We demonstrate that HIME can efficiently detect meaningful variable-length motifs in long, real world time series.
منابع مشابه
Efficient Discovery of Time Series Motifs with Large Length Range in Million Scale Time Series
Detecting repeated variable-length patterns, also called variable-length motifs, has received a great amount of attention in recent years. Current state-of-the-art algorithm utilizes fixed-length motif discovery algorithm as a subroutine to enumerate variable-length motifs. As a result, it may take hours or days to execute when enumeration range is large. In this work, we introduce an approxima...
متن کاملVisualizing Variable-Length Time Series Motifs
The problem of time series motif discovery has received a lot of attention from researchers in the past decade. Most existing work on finding time series motifs require that the length of the motifs be known in advance. However, such information is not always available. In addition, motifs of different lengths may co-exist in a time series dataset. In this work, we develop a motif visualization...
متن کاملDiscovering Multivariate Motifs using Subsequence Density Estimation and Greedy Mixture Learning
The problem of locating motifs in real-valued, multivariate time series data involves the discovery of sets of recurring patterns embedded in the time series. Each set is composed of several non-overlapping subsequences and constitutes a motif because all of the included subsequences are similar. The ability to automatically discover such motifs allows intelligent systems to form endogenously m...
متن کاملTime Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization
Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...
متن کاملGrammarViz 2.0: A Tool for Grammar-Based Pattern Discovery in Time Series
The problem of frequent and anomalous patterns discovery in time series has received a lot of attention in the past decade. Addressing the common limitation of existing techniques, which require a pattern length to be known in advance, we recently proposed grammar-based algorithms for efficient discovery of variable length frequent and rare patterns. In this paper we present GrammarViz 2.0, an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.04883 شماره
صفحات -
تاریخ انتشار 2018